一点时间慢慢消化的同时,也增加他对阿拉伯数字的兴趣。
“这个叫做阿拉伯数字,而中间那些符号被称作运算符号。”
公元500年前后,随着经济、种姓制度的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。
这里采用了很多概念性名词,如果一一解释的话会对赵隆基的脑子形成负担,进而影响他对之前项燕所讲那些东西的消化,喧宾夺主,所以项燕干脆就没展开讲解,让赵隆基础当话本故事听。
天文学家阿叶彼海特在简化数字方面有了新的突破:
他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。
这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。
以后,印度的学者又引出了作为零的符号。
公元3世纪,古印度的一位科学家巴格达发明了阿拉伯数字。
最古的计数目大概至多到3,为了要设想“4”这个数字,就必须把2和2加起来。
5是2加2加1,3这个数字是2加1得来的,大概较晚才出现了用手写的五指表示5这个数字和用双手的十指表示10这个数字。
这个原则实际也是数学计算的基础。